نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
20,169 نتائج ل "Performance enhancement"
صنف حسب:
The ETTO Principle: Efficiency-Thoroughness Trade-Off
Accident investigation and risk assessment have for decades focused on the human factor, particularly 'human error'. Countless books and papers have been written about how to identify, classify, eliminate, prevent and compensate for it. This bias towards the study of performance failures, leads to a neglect of normal or 'error-free' performance and the assumption that as failures and successes have different origins there is little to be gained from studying them together. Erik Hollnagel believes this assumption is false and that safety cannot be attained only by eliminating risks and failures. The ETTO Principle looks at the common trait of people at work to adjust what they do to match the conditions - to what has happened, to what happens, and to what may happen. It proposes that this efficiency-thoroughness trade-off (ETTO) - usually sacrificing thoroughness for efficiency - is normal. While in some cases the adjustments may lead to adverse outcomes, these are due to the very same processes that produce successes, rather than to errors and malfunctions. The ETTO Principle removes the need for specialised theories and models of failure and 'human error' and offers a viable basis for effective and just approaches to both reactive and proactive safety management.
Competition, Gender Equality, and Doping in Sports in the Red Queen Effect Perspective
The nature of sports is characterized by a strong competitive component that generates inequalities among athletes at different levels, specifically in relation to gender, technology, and doping. These inequalities can be represented according to the Red Queen effect perspective, which has been previously hypothesized in other competitive environments (evolutionary biology and economics, for instance). The Red Queen effect considers each competitive environment to require a constant effort to maintain a position of competitive advantage in order reach the best result possible. Therefore, the aim of the current paper is to provide an innovative perspective for the understanding of competition in sports, identifying factors (i.e., physical appearance for gender equality, socioeconomic status of a sport team for technology, and antidoping rules for doping) influencing athletes’ possibilities to win a competition. Concerning gender differences, the disparity between genders reflects a lower coverage in sports news, and media are more likely to focus on female athletes’ physical appearance than their performance in sports. Therefore, women struggle more with increasing their visibility and in affirming their status as an athlete. On the other hand, the introduction of science and technological innovations in sports has generated economic interests in sport competitions, which reached superior performance levels compared to the past. Teams that cannot afford financial burdens of technological innovation risk being left out from sport competitions. Finally, doping creates a Red Queen environment since antidoping rules catch a small portion of athletes using performance enhancement drugs.
Muscle Function and Thickness Are Not Associated with Responsiveness to Post-Activation Performance Enhancement
There is great variability in responsiveness to post-activation performance enhancement (PAPE). Factors such as greater expression of type II muscle fibers and experience with strength training are associated with greater responsiveness to PAPE. We investigated whether there is an association between markers of muscular function and morphology and responsiveness to PAPE in untrained individuals. Sixty-six active men (22 ± 2 years, 74 ± 11 kg, and 172 ± 27 cm) participated in the study. Their countermovement jump (CMJ) heights were measured before and four minutes after a pre-activation protocol consisting of five squats with a 5RM load. Isometric knee extensor peak torque (IPT), CMJ power (POCON), and thickness of the vastus lateralis muscle (VLMT) of the participants were also determined in an unpotentiated condition. Change in CMJ height (ΔCMJ) following the pre-activation protocol was calculated and its associations with baseline CMJ height (CMJCON), POCON, IPT, and VLMT were tested. Linear stepwise multiple regression models were also applied to screen for predictors of ΔCMJ among the dependent variables. No significant change (p = 0.28) in CMJ height was observed after the PA protocol (pre: 30.8 ± 5.1 cm; post: 31.0 ± 5.5 cm). No significant associations (p > 0.05) were found between ΔCMJ and IPT, VLMT, POCON, and CMJCON (r = 0.29, 0.18, 0.09, and 0.01, respectively). Linear stepwise multiple regression analyses did not result in any significant models for ΔCMJ prediction. Although we confirmed the high individual variability in response to PA, no associations between neuromuscular performance/morphology and responsiveness to PAPE were found.
The Effects of Plyometric Conditioning Exercises on Volleyball Performance with Self-Selected Rest Intervals
Post-activation performance enhancement remains a topic of debate in sport science. The purpose of this study was to examine the effects of lower-body plyometric conditioning activity (CA) with a self-selected intra-complex rest interval on upper and lower-body volleyball specific performance. Eleven resistance-trained female volleyball players participated in the study (age: 20 ± 2 years; body mass: 67.8 ± 4.4 kg; height: 178 ± 6 cm; half back squat one-repetition maximum: 78.6 ± 10.2 kg; experience in resistance training: 5.5 ± 2.1 years and in volleyball training: 10 ± 2.3 years). Each participant performed a plyometric CA followed by two different sport-specific tests: an attack jump and a standing spike attack. The changes in jump height (JH), relative mean power output (MP) and ball velocity (BV) were analyzed before and after the CA with self-selected rest intervals. The applied plyometric CA with self-selected intra-complex rest intervals led to an insignificant decline in JH (p = 0.594; effect size [ES]: −0.27) and MP (p = 0.328; ES: −0.46) obtained during the attack jump as well as a significant decline in BV (p = 0.029; ES: −0.72) during the standing spike attack. This study showed that a plyometric CA with self-selected intra-complex rest intervals failed to elicit localized and non-localized PAPE effect in a group of sub-elite volleyball players.
Flow-Based Optimal System Design of Urban Water Transmission Network under Seismic Conditions
In this paper, an optimal system design for the seismic performance enhancement of a water transmission network was proposed. The main purpose of the optimal design is to maximize the system performance within a limited construction cost. The proposed model evaluates network performance through the spatially correlated seismic attenuation law, determination of the failure status of the network facility, and numerical modeling of water networks. For hydraulic simulation, a MATLAB computer code was developed to enable the EPANET program with pressure-driven analysis. To demonstrate the proposed model, an actual water transmission network of A-city, South Korea was adopted, and a water network map was constructed based on the geographic information system data. Numerical results showed that the optimized network model increased system serviceability and nodal serviceability by 9.9% and 11%, respectively, and the average nodal pressure of the network increased by 3.6 m compared to existing models. In addition, the result of the optimal pipeline design was utilized to compare the performance against interdependencies and the elapsed time of pipelines. The optimized network exhibited higher performance than the existing network, depending on the elapsed time and interdependence. Therefore, to maximize the performance of the water network, it is necessary to use optimized network design parameters according to the appropriate construction budget.
Managing Business Performance
Motivate, engage, and achieve lasting success with more effective performance management Managing Business Performance offers a unique blueprint for achieving organisational excellence through improved productivity, efficiency, engagement, and morale. With a unique approach that acknowledges the human aspect of performance management, this book combines technical and social know-how to give you a solid framework for designing, configuring, and managing performance improvement initiatives with sustainable results. You'll find practical models, techniques, and tools that take you beyond management theory into advice that you can use, with clear explanations that steer you toward the customisations that would best suit your organisation. International case studies illustrate these ideas in action, providing an intimate look at how cultural differences impact management strategies, and insight into how they can be managed. Organisational performance tools and techniques are well established, but many organisations will never realise their full benefit. This book helps you get more out of your performance strategy by showing you how the organisation's complex social nature impacts real-world outcomes, and how it can be used to drive better performance. * Blend technical and social management strategies * Keep people motivated and engaged * See better results with more staying power * Get the very best from your organisation Performance management strategies that fail to take people into account are counterproductive. There's no better way to de-motivate, demoralise, and disengage the people upon whom the organisation depends. Sustainable success requires a blended approach that utilizes the most effective science within the art of people management, and Managing Business Performance gives you a solid foundation for better business performance strategy.
A Hybrid Nanofluid of Alumina and Tungsten Oxide for Performance Enhancement of a Parabolic Trough Collector under the Weather Conditions of Budapest
Recently, there has been significant interest in the thermal performance of parabolic trough collectors. They are capable of operating and generating highly variable temperature ranges, which can be used in various applications. This paper, therefore, addressed the thermal performance model of using a parabolic trough collector under the radiation intensity level found in Budapest city, as well as the effect of inserting a hybrid nanofluid as the thermal fluid. First, a new modified hybrid nanofluid of alumina and tungsten oxide-based Therminol VP1 is used to enhance the thermal properties of the thermal fluid to be more efficient to use. This enhancement is performed under various volume concentrations and has a volume fraction of 50:50. Second, in order to demonstrate the effectiveness of the thermal element, mathematical energy balance equations were solved and simulated using MATLAB Symbolic Tools. The simulation is presented for two cases: one under a constant radiation intensity and the other under the radiation intensity level of Budapest. For both cases, the results of the dimensionless Nusselt number, heat transfer coefficient, pressure drop, exergy efficiency, and energy efficiency are described. The major findings show that a volume concentration of 4% (Al2O3 and WO3) based Therminol VP1 was the most efficient volume concentrations in both cases. For the first case, the maximum enhancement of the Nusselt number and the heat transfer coefficient are 138% and 169%, respectively. These results enhanced the thermal and exergy efficiencies by 0.39% and 0.385% at a temperature 600 K, flow rate of 150 L/min, and radiation intensity of 1000 W/m2. For the second case, the maximum exergy and energy values are recorded at midday under Budapest’s summer climatic conditions and reach 32.728% and 71.255%, respectively, under the optimum temperature of 500 K and flow rate of 150 L/min. Accordingly, the mean improvement in thermal and exergy efficiencies approximately equal to 0.25% at a high concentration, regardless of the season (summer or winter).
Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction
Abstract Subnanometric metal clusters usually have unique electronic structures and may display electrocatalytic performance distinctive from single atoms (SAs) and larger nanoparticles (NPs). However, the electrocatalytic performance of clusters, especially the size-activity relationship at the sub-nanoscale, is largely unexplored. Here, we synthesize a series of Ru nanocrystals from single atoms, subnanometric clusters to larger nanoparticles, aiming at investigating the size-dependent activity of hydrogen evolution in alkaline media. It is found that the d band center of Ru downshifts in a nearly linear relationship with the increase of diameter, and the subnanometric Ru clusters with d band center closer to Femi level display a stronger water dissociation ability and thus superior hydrogen evolution activity than SAs and larger nanoparticles. Benefiting from the high metal utilization and strong water dissociation ability, the Ru clusters manifest an ultrahigh turnover frequency of 43.3 s −1 at the overpotential of 100 mV, 36.1-fold larger than the commercial Pt/C.
Metal halide perovskites for light-emitting diodes
Metal halide perovskites have shown promising optoelectronic properties suitable for light-emitting applications. The development of perovskite light-emitting diodes (PeLEDs) has progressed rapidly over the past several years, reaching high external quantum efficiencies of over 20%. In this Review, we focus on the key requirements for high-performance PeLEDs, highlight recent advances on materials and devices, and emphasize the importance of reliable characterization of PeLEDs. We discuss possible approaches to improve the performance of blue and red PeLEDs, increase the long-term operational stability and reduce toxicity hazards. We also provide an overview of the application space made possible by recent developments in high-efficiency PeLEDs.